

Induced Seismicity and Carbon Storage

Joshua White, LLNL

NRAP Induced Seismicity Working Group

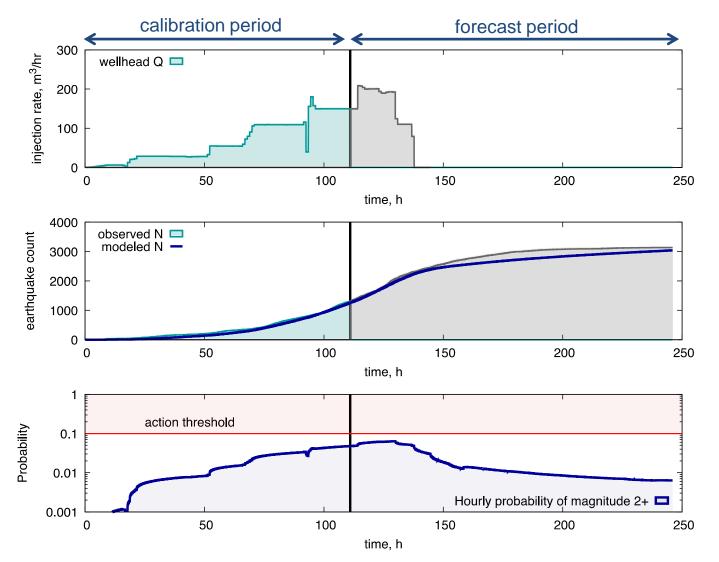
Seismicity observed at CO₂ injection operations

Operation	Category	Max Observed Magnitude	Seismicity Type
Aneth USA	CO2-EOR	M 0.8	Type II
Cogdell USA	CO2-EOR	M 4.4	Туре І
Weyburn Canada	CO2-EOR	M -1	Type II
Decatur USA	Dedicated Storage	M 1	Туре І
In Salah Algeria	Dedicated Storage	M 1	Type I & II

Type I = Seismicity concentrated within overpressured zone. **Type II** = Seismicity outside overpressured zone.

Aneth: Rutledge 2010, Zhou et al. 2010, Soma & Rutledge 2013. Cogdell: Gan and Frohlich 2013, Davis and Pennington 1989. Weyburn: Whittaker et al. 2011, White et al. 2011, Verdon et al. 2010 & 2011. Decatur: Will et al. 2014, Couëslan et al. 2014, Kaven et al. 2014 & 2015. In Salah: Oye et al. 2013, Goertz-Allman et al. 2014, Verdon et al. 2015.

Three key hurdles to effective seismicity management:


1) Faults are pervasive, and current tools to identify and characterize them have intrinsic limitations.

2 The relationship between fluid injection, seismic activity, and damage is complex, and projects have little time to figure it out.

3 The knobs we can turn to reduce seismicity often have a lag before taking effect, can increase cost, and can reduce storage rates.

Novel solutions to these problems will significantly improve our ability to manage seismic risk.

NRAP Focus: Next-generation stoplight systems based on realtime hazard forecasting.

Figure: Conceptual workflow for generating a continuously-updated hazard estimate using flow rate and microseismic data.

References

- J.A. White and W. Foxall (2016). Assessing induced seismicity risk at CO₂ storage projects: Recent progress and remaining challenges. Int. J. Greenhouse Gas Control 49:413-424.
- NRAP Induced Seismicity Working Group (2016). Induced seismicity and carbon storage: Risk assessment and mitigation strategies. NRAP Technical Report Series, NRAP-TRS-II-005-2016, US Department of Energy, National Energy Technology Laboratory, 56 pp.
- Bachmann et al. (2011) Statistical analysis of the induced Basel 2006 earthquake sequence: Introducing a probability-based monitoring approach for Enhanced Geothermal Systems. Geophys. J. International 186.2: 793-807.

Contact

Joshua A. White

Lawrence Livermore National Laboratory

jawhite@llnl.gov